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Abstract

Introduction—Recurrent venous thromboembolism (VTE) occurs infrequently following a 

provoked event but occurs in up to 30% of individuals following an initial unprovoked event. 

There is limited understanding of the biological mechanisms that predispose patients to recurrent 

VTE.

Objectives—To identify whole blood gene expression profiles that distinguished patients with 

clinically distinct patterns of VTE.

Patients/Methods—We studied 107 patients with VTE separated into 3 groups: (1) ‘low-risk’ 

patients had one or more provoked VTE; (2) ‘moderate-risk’ patients had a single unprovoked 

VTE; (3) ‘high-risk’ patients had ≥2 unprovoked VTE. Each patient group was also compared to 

twenty-five individuals with no personal history of VTE. Total RNA from whole blood was 

isolated and hybridized to Illumina HT-12 V4 Beadchips to assay whole genome expression.
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Results—Using class prediction analysis, we distinguished high-risk patients from low-risk 

patients and healthy controls with good receiver operating curve characteristics (AUC = 0.81 and 

0.84, respectively). We also distinguished moderate-risk individuals and low-risk individuals from 

healthy controls with AUC’s of 0.69 and 0.80, respectively. Using differential expression analysis, 

we identified several genes previously implicated in thrombotic disorders by genetic analyses, 

including SELP, KLKB1, ANXA5, and CD46. Protein levels for several of the identified genes 

were not significantly different between the different groups.

Conclusion—Gene expression profiles are capable of distinguishing patients with different 

clinical presentations of VTE, and genes relevant to VTE risk are frequently differentially 

expressed in these comparisons.
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Introduction

Deep vein thrombosis (DVT) or pulmonary embolism (PE), referred to collectively as 

venous thromboembolism (VTE), affects approximately 350,000 to 600,000 individuals in 

the United States each year, and up to 100,000 will die from the thromboembolic event [1]. 

VTE may occur after transient exposures such as a surgical procedure, prolonged 

immobilization, or with the use of certain therapies, such as oral contraceptives and hormone 

replacement therapy, which is referred to as a provoked event [2]. VTE can also occur in the 

absence of any acquired risk factors, which is referred to as an unprovoked, or idiopathic, 

event [1,3,4]. Other factors that may increase an individual patient’s risk for VTE include 

increased age, the presence of a thrombophilia [5], race/ethnicity, and a variety of medical 

conditions [6].

The current standard of care for patients with provoked VTE consists of therapeutic 

anticoagulation for three months [7]. In contrast, for patients with an unprovoked VTE, up to 

30% will sustain a recurrent event within ten years of completing a standard course of 

therapy [3,8]. Consequently, it is recommended to consider an extended course of therapy 

for patients with an initial unprovoked event [7]. Continued anticoagulant therapy has been 

shown in several studies to significantly decrease the risk for recurrent VTE [6–8] but the 

risk of major bleeding in individuals after the first three months of therapy ranges from a 

baseline of 0.3% to ≥2.5% per year [7].

Determining which patients with VTE have a high risk for recurrent events, and balancing 

this risk with the potential for bleeding if anticoagulation is continued, is an important health 

concern. Multiple studies have investigated biomarkers to help predict which patients are at 

a higher risk for recurrent VTE [9]. Current evidence suggests that inherited thrombophilic 

disorders are not helpful to predict which patients with a first unprovoked VTE are at an 

increased risk for recurrent events [10]. In contrast, elevated D-dimer levels obtained after 

completing a standard course of anticoagulant therapy are associated with an increased risk 

for recurrent VTE [11]. Other biomarkers that have been associated with recurrent VTE 

include elevated levels of soluble p-selectin [12] and elevated thrombin generation [13].
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Whole blood gene expression studies have been used in a variety of disorders including 

myocardial infarction and systemic lupus erythematosus [14,15]. We previously used whole 

blood gene expression profiles to distinguish patients with a single VTE from patients with 

recurrent VTE [16], but this study combined patients with provoked and unprovoked events. 

Here we extend this initial study by using clinically well-defined patient groups with the 

objectives of comparing individuals based on the type of VTE (provoked versus 

unprovoked) as well as by the number of events (single versus multiple). We used two 

distinct analytical approaches, class prediction analysis [17–20] and differential expression 

analysis [21] to identify means to distinguish among these patient groups. A group of 

healthy individuals was included to look for genes and pathways that are differentially 

expressed in healthy individuals compared to individuals with different types of VTE.

Material and Methods

Patient Population

Participants were enrolled in 2009 and 2010 at 4 sites participating in the Thrombosis and 

Hemostasis Centers Research and Prevention Network supported by the Centers for Disease 

Control and Prevention (CDC): Duke University Medical Center, Durham NC; Mayo Clinic, 

Rochester MN; University of North Carolina, Chapel Hill NC; and Rutgers Robert Wood 

Johnson Medical School, New Brunswick NJ. This Network consisted of Thrombosis and 

Hemostasis Centers that provided comprehensive specialty care to patients with 

thrombophilia and thrombotic disorders [22]. Study protocol and consent forms were 

approved by Institutional Review Boards at each site and at the CDC.

Patients with at least one VTE, defined as either PE or DVT of the leg or arm, with the first 

event occurring at age 18 years or older, and who were, at the time of enrollment, greater 

than 10 weeks from their most recent VTE, were approached for participation. The diagnosis 

of VTE was reviewed and objectively confirmed by the site investigator, based on clinical 

history and imaging data. Individuals with no prior history of VTE or known inherited 

clotting disorder and similar in age, gender, and race to the VTE case were identified at each 

site and approached to participate as controls. Patients with known antiphospholipid 

syndrome, active or prior malignancy (excluding skin cancer) at the time of VTE diagnosis, 

infection within the past two weeks of enrollment or currently pregnant were not included in 

this study.

Consenting VTE patients were allocated to 3 groups: (1) low-risk, defined as patients who 

had sustained 1 or more provoked VTE with no history of an unprovoked VTE; (2) 

moderate-risk, defined as patients who had sustained a single unprovoked VTE (with or 

without additional provoked VTE); and (3) high-risk, defined as patients who had sustained 

2 or more unprovoked VTE (with or without additional provoked VTE). A provoked event 

was defined as a VTE occurring in a patient with a clear transient acquired risk factor for 

VTE, i.e. VTE occurring within 3 months after trauma, hospitalization, prolonged 

immobilization, or surgery and the post-operative setting; or in patients taking oral 

contraceptives or hormone replacement therapy; or during pregnancy or the post-partum 

period. Unprovoked events were defined as VTE occurring in the absence of any of these 

transient risk factors.
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Patients with more than one VTE (provoked or unprovoked) had distinct clinical events that 

occurred at different points in time. Thromboembolic events affecting more than one 

vascular bed but occurring at the same time were considered to be a single event (e.g., a 

patient presenting with PE and DVT).

Data and Sample Collection

Demographic and clinical information was collected from each participant through chart 

abstraction or in-person interview. Citrated plasma and serum samples were collected for 

each participant, processed, and stored at −80 °C at each site. Blood was simultaneously 

collected in PAXgene RNA tubes and stored according to the manufacturer’s instructions. 

De-identified samples were shipped to the CDC Division of Blood Disorders’ Molecular and 

Hemostasis Laboratories for analysis.

RNA Isolation and Microarray Hybridization

Total RNA was isolated from whole blood drawn into PAXgene tubes using the PAXgene 

Blood RNA kit (PreAnalytiX; Qiagen GmbH-USA). The quality and quantity of the RNA 

was confirmed using the Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE). Samples with an A260/A280 ratio >2.19, or ≤70 ng of RNA, were 

excluded from the final analyses. RT PCR using probes for IL-1beta and CD141 was used to 

check RNA expression levels for several of the initial samples from each of the sites, to 

confirm comparable yields. RNA was amplified and the cRNA was biotinylated using the 

Ambion Illumina TotalPrep RNA Amplification Kit (Life Technologies, Carlsbad, CA). 

Following labeling, cRNA samples were hybridized to Illumina HT-12 V4 Beadchips to 

assay whole genome gene expression with over 47,000 probes against human transcripts.

Microarray Data Processing

A comprehensive quality control process was performed on all arrays using the lumi 

package in Bioconductor in the R environment for statistical computing [23,24]. Quality of 

the raw data was assessed using the percent of probes present, MA plots, boxplots of the 

expression distribution, and heatmaps to visualize the correlation between samples. Samples 

in which the percent of probes present was 15% or less were excluded, and all probes that 

were not detected in greater than 95% of the remaining samples were removed (21,174 out 

of 47,304). The lumi package was also used to perform background corrections, expression 

value log-transformation, and quantile normalization. The data was then filtered without 

regard to phenotype to include only the top 10,000 probes that varied the most among all of 

the samples [25,26] The microarray data files were submitted to NCBI’s Gene Expression 

Omnibus and are accessible through GEO series accession number GSE48000 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48000) [27].

Statistical Analyses

Descriptive statistics of the demographics of the study participants, including means and 

frequencies, were performed using Excel (Microsoft, Redmond, WA). The Mann–Whitney 

nonparametric test in Prism 6 (Graphpad Software Inc., La Jolla, CA) was used to compare 

BMI, the ages of the participants at the time of enrollment, at the time of first VTE, and time 
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since last VTE. Fisher’s exact test (Graphpad Prism 6) was used to compare the gender, race 

and proportion of PE and anticoagulant therapy among the groups. The mean concentrations 

and 95% confidence intervals for the biomarker levels were determined using Graphpad 

Prism 6.

Class prediction was done on the six possible pair-wise comparisons of the four study 

groups using penalized binary regression. Bayesian Factor Regression was used to model 

correlation structure in the expression data [17]. This served as a dimension reduction step in 

which a large number of expression vectors were expressed as a smaller number of factors. 

In addition to reducing the dimension of the data, the factors were closer to being 

independent when compared to the original data, which facilitates model building. Factor 

analysis is unsupervised and, therefore, does not use phenotype labels. The resulting factor 

scores were then used as predictors to build classification models. Penalized regression 

implemented in the glmnet R package was used to build the classification models [18,19]. 

Estimates of prediction accuracy were obtained through leave-one-out cross-validation, 

which provides unbiased estimates of accuracy, and is appropriate for samples sizes in the 

range of the current study [28–30]. Receiver Operating Characteristic curves and the 

corresponding area under the curve (AUC) were generated using Graphpad Prism 6.

Differential expression was also performed on the six possible pair-wise comparisons of the 

four study groups using the limma package in Bioconductor [21]. A false discovery rate of 

0.005 was used to determine which genes were significantly differentially expressed in each 

comparison.

Functional Analysis of Gene Lists Obtained from Differential Expression

DAVID, a program which aides in the functional interpretation of large lists of genes using 

information from a variety of public bioinformatics databases, was used to understand the 

gene ontologies, biological function and pathways associated with the genes identified in the 

differential expression analysis [31,32]. The functional annotation chart tool in DAVID was 

used to determine the top enriched ontologies in the gene lists from the differential 

expression analysis and functional annotation clustering tool in DAVID was used to look for 

ontologies specific to VTE.

Biomarker Testing

Factor XI, annexin A5, sP-selectin, endothelin, and CD46 levels in plasma or serum samples 

collected at the same time as the whole blood RNA sample were determined by ELISA. 

Serum was used for annexin A5, and citrated plasma was used for the other four biomarkers. 

Optical density was measured with a Vmax Kinetic Microplate Reader (Molecular Devices, 

Sunnyvale, CA). The following kits were used: Total Human Coagulation Factor XI Antigen 

Assay (Molecular Innovations MI, USA); Human Annexin V Platinum ELISA kit 

(eBioscience, San Diego CA); Human sP-selectin/CD62P ELISA kit (R&D Systems, 

Minneapolis, MN); Quantitative ELISA Endothelin-1 (ET-1) Immunoassay kit (R&D 

Systems); and the MCP (CD46) ELISA Kit from UscnLife-Science Inc. (Wuhan EIAab 

Science Co, China).
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Results

Study Participants

One hundred and seventy-eight participants were enrolled, but 3 were subsequently 

excluded because they did not meet enrollment criteria (1 in the low-risk group and 2 in the 

moderate-risk group). Of the 175 participants meeting enrollment criteria, 43 participants 

were excluded because ≤15% of the probes were detected in samples from these individuals 

(9 in the low-risk group, 10 in the moderate-risk group, 5 in the high-risk group, and 19 in 

the healthy control group).

Characteristics of the 132 remaining participants with genomic expression data that passed 

quality assessment are shown in Table 1. Individuals in the high-risk and moderate-risk 

groups were older at the time of enrollment, but the age of the individuals at the time of their 

first VTE event did not differ by risk group (Table 1). Five of the low-risk patients had 

sustained more than one provoked VTE, and twelve of the moderate-risk patients had 

sustained one or more provoked events in addition to a single, unprovoked VTE (Table 1). A 

significantly higher proportion of individuals were on anticoagulant therapy at the time of 

enrollment in the high-risk and moderate-risk groups compared to the low-risk group. 

Fifteen individuals in the low-risk group were on warfarin therapy for more than six months, 

for various reasons, including recurrent provoked thrombotic events and ongoing exposure 

to identified risk factors.

Class Prediction Analysis

Class prediction analysis was done on each of the six possible pairwise comparisons (Table 

2). Bayesian Factor Regression Modeling was used to estimate factors based on a given 

signature. The factor scores were used to predict the phenotype, and leave-one-out cross-

validation was used to assess the success of the predictive model (Table 2). The best results 

were obtained for the comparisons between the high-risk and low-risk groups, the high-risk 

group and the healthy controls, and the low-risk group and healthy controls, where the 

AUCs were 0.81, 0.84 and 0.80 respectively. The comparison between the moderate-risk 

group and the healthy controls had an AUC of 0.69, but the comparisons between the 

moderate-risk group and the high-risk and low-risk groups had AUC values of 0.50 and 

0.58, respectively.

Since the individuals in the high-risk and low-risk groups, and the healthy controls, differed 

in age and gender (Table 1), we performed the class prediction analysis using only age and 

gender. These two parameters were not good predictors of the phenotypes, resulting in 

AUC’s of 0.60 or lower suggesting that the age and gender differences were not contributing 

to the class prediction analysis (data not shown). To exclude the possibility that the use of an 

anticoagulant might influence the expression profiles, we also performed these analyses 

excluding those participants in the high-, moderate-, and low-risk groups who were not 

taking warfarin. This did not significantly alter the results (data not shown) suggesting that 

warfarin use was not significantly contributing to our class prediction analysis.
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Differential Expression Analysis

To explore the biologic differences between the groups, we used differential expression 

analysis to determine which genes were differentially expressed in each of the 6 

comparisons. Since there was a significant difference in age, gender, and BMI among 

several of the groups (Table 1), these parameters were factored into this analysis. Using a 

false discovery rate of 0.005, we found that 3111 gene probes were differentially expressed 

when the high-risk group and healthy controls were compared, and 446 gene probes were 

differentially expressed when the high-risk and low-risk groups were compared. These two 

comparisons had 177 gene probes in common (Table S1).

Only 1 gene (MGC4677, long intergenic non-protein coding RNA 15) was differentially 

expressed in the comparisons between the low-risk group and the healthy controls, and the 

moderate-risk group and the healthy controls. No genes were differentially expressed when 

comparing the moderate-risk group to either the high-risk or the low-risk groups, even when 

false discovery rates of up to 0.25 were used.

Top Significantly Enriched Gene Ontologies

We used the functional annotation chart tool in DAVID to determine the top differentially 

expressed gene ontologies in the comparisons between the high-risk and low-risk groups, 

and the high-risk group and healthy controls. The top ontologies for the high-risk compared 

to the low-risk groups included extrinsic to membrane (GO:0019898) as well as other 

membrane-related and transport-related ontologies (Table S2). The top ontologies for the 

high-risk group compared to healthy controls included intracellular organelle lumen (GO: 

0070013) as well as several mitochondrial-related ontologies (Table S2).

Gene Ontologies Relevant to VTE

We next used the functional annotation clustering tool in DAVID to look at all of the 

ontologies of the differentially expressed genes in these two comparisons. Functional 

annotation clustering groups genes with similar annotation terms including ontologies and 

pathways, providing a way to look at biological mechanisms. Clustering revealed several 

categories of gene ontologies with potential relevance to VTE, including blood coagulation 

(Table 3), immune response (Table S3), and vascular biology (Table S4).

In the coagulation-related category, three genes, CD46 (complement regulatory protein), 

F2RL1 (coagulation factor II receptor-like 1 (PAR2)), and RAB27A (Rab27A, member RAS 

oncogene family) were differentially expressed in the comparisons between the high-risk 

group and the low-risk group as well as the high risk group and healthy controls (Table 3). 

For each of these genes, expression is lower in the high-risk group, compared to either the 

low-risk group or the healthy controls. One additional gene is differentially expressed in the 

high risk vs. low risk comparison, and 21 genes are differentially expressed in the high risk 

vs. healthy controls comparison (Table 3). Several of the genes differentially expressed in 

these two comparisons have been previously identified as being of potential clinical 

relevance in patients with VTE, including, SELP, ANXA5, KLKB1, and F11 [12,33,34] 

(Table 3).
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In the immune-response related category, 14 genes were differentially expressed in both 

comparisons (Table S3). An additional 6 genes were differentially expressed in the 

comparison between the high-risk and low-risk groups, and 122 genes were differentially 

expressed in the comparison between the high-risk group and healthy controls (Table S3). 

Multiple genes differentially expressed in these two comparisons have been previously 

identified as being of potential clinical relevance in patients with VTE, including SELP, IL4, 

and TF.

In the vascular biology-related category, 6 genes were differentially expressed in both 

comparisons (Table S4). An additional 2 genes were expressed in the comparison between 

high-risk and low-risk groups, and 44 genes were differentially expressed in the comparison 

between the high-risk group and healthy controls (Table S4) Several genes unique to this 

category have been associated with VTE, including ANXA2, in patients with 

antiphospholipid syndrome, and HIF1A.

Differentially Expressed Genes in Pathways Relevant to VTE

Twelve genes in the KEGG complement and coagulation cascades pathway (hsa04610) were 

differentially expressed in the high-risk group versus healthy controls comparison (Table 3). 

One of these genes, CD46, is also differentially expressed in the high-risk versus low-risk 

comparison.

Correlation Between Gene Expression and Protein Expression

To investigate whether there was any relationship between gene expression and protein 

levels, we selected five genes relevant to VTE that are differentially expressed in at least one 

of the comparisons (F11, ANXA5, EDN1, SELP, and CD46) and measured the 

corresponding protein levels in plasma or serum (Fig. 1). Factor XI levels were significantly 

higher in the healthy controls compared to the high-risk group (mean plasma protein level 

3761 versus 2707 ng/ml, p = 0.003), and CD46 levels were significantly higher in the high-

risk group compared to the moderate-risk group (mean plasma protein level 1467 versus 

1183 pg/ml, p = 0.042). All other pairwise comparisons were not significantly different (Fig. 

1). The mean concentration and 95% confidence interval of each protein in the 4 study 

groups is shown in Table S5.

Discussion

We used gene expression profiling as an unbiased approach to explore the relationship 

between RNA expression levels and the different clinical phenotypes of VTE. Applying 

class prediction analysis to the gene expression profiles, we obtained the best discrimination 

between patients with recurrent unprovoked VTE (high-risk group) and healthy controls as 

well as individuals with provoked VTE only (low-risk group). We obtained reasonable 

levels of discrimination between patients with a single unprovoked VTE (moderate-risk 

group) and those with provoked VTE only compared to the healthy controls, but 

discrimination was poor between individuals with a single unprovoked VTE and the other 

two VTE groups (Table 2). The moderate-risk group would be expected to be the most 

heterogeneous of the three patient groups in this study. More than 90% of the patients in the 
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moderate-risk group were on anticoagulant therapy at the time of enrollment, and the 

average time from the most recent VTE for this group was 2.17 years (range 0.23 to 7.3). If 

these patients had discontinued anticoagulant therapy, it would be expected that up to a third 

of them would sustain a recurrent, unprovoked VTE within ten years, which would then 

place them in the high-risk group [3,8]. Prospective studies will be necessary to determine 

whether gene expression profiles can identify which patients with a single unprovoked VTE 

are at highest risk for developing a recurrent event after a standard course of anticoagulant 

therapy.

Using differential expression analysis, we found several genes previously identified by 

alternative strategies as potentially having a role in thrombotic disorders (Tables 3, S3, and 

S4). Single nucleotide polymorphisms within F11, SELP and KLKB1 have been found to be 

associated with VTE [34]. The ANXA5 M2 haplotype has been found to be significantly and 

independently associated with the occurrence of DVT [33]. Upregulation of HIF-1a has been 

reported to stimulate recanalization of venous thrombus [35]. Our results confirm that these 

genes are contributing to VTE risk, and that this contribution can be detected at the level of 

RNA expression in whole blood. Correlations between genotype and RNA expression, and 

between RNA and protein expression, will be important to understand the relationship 

between these findings and the risk of recurrent VTE.

In addition to coagulation-related genes, we also found that immune-response genes were 

frequently differentially expressed in our analyses (Table S3). Crosstalk between the 

complement and coagulation cascades has been well established. Proteins in the complement 

cascade can increase the thrombogenicity of blood and coagulation proteins can activate 

components of the complement cascade [36,37]. We identified 12 genes in the coagulation 

and complement cascades that are differentially expressed in the high risk group compared 

to the healthy controls, and one of these genes, CD46, is also differentially expressed in the 

high risk group compared to the low risk group. Seven genes (CD46, CR1, CR2, C5, CFH, 

C1QB and SERPING1) are involved in complement activation. Three genes (CR1, C5, and 

C1QB) were also found to be differentially expressed in peripheral blood mononuclear cells 

in an independent study comparing patients with pulmonary embolism to patients with 

ischemic heart disease [38]. Two of the differentially expressed genes we identified in the 

complement cascade have been linked to thrombotic disorders. Gene mutations in CD46 and 

CFH have been identified in atypical hemolytic uremic syndrome (aHUS), a complement-

mediated form of renal thrombotic microangiopathy [39]. In addition, eculizumab, a 

humanized monoclonal antibody to C5, reduces the rate of thrombotic events in patients 

with paroxysmal nocturnal hemoglobinuria [40].

To assess whether plasma levels of several of the proteins expressed by the genes identified 

by differential expression might be informative, we measured the corresponding levels of 

five proteins that have been previously associated with risk for VTE. Factor XI levels were 

significantly, albeit slightly, higher in the healthy control group compared to the high-risk 

group (Fig. 1), which mirrored the relationship observed in the comparison of RNA 

expression (Table 3). Prior reports have observed a higher risk of VTE in patients with 

elevated levels of Factor XI [41], however, and this observation needs to be replicated in a 

larger patient population with concomitant determination of genetic variants, gene 
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expression and protein levels. Recent reports in the literature have demonstrated that mRNA 

levels cannot be relied on to predict protein abundance [42].

We previously used gene expression profiles to evaluate individuals with single versus 

recurrent VTE [16]. The two patient groups in that study included individuals with provoked 

as well as unprovoked events, resulting in a more heterogeneous mix of phenotypes. 

Nevertheless, a 50 gene probe model could distinguish individuals in the two groups with an 

AUC of 0.75 (95% confidence interval, 0.60 to 0.90). Two genes involved in platelet 

aggregation (IGF1R and PPARD) were included in that model, as well as ten genes involved 

in immune and inflammatory responses. There is one gene in common with our current 

study, SNRK an immune response related gene (Table S3). That study used a different 

platform (Affymetrix), however, which limits the ability to compare results from the two 

analyses. More recently, Wang, et al. [43] used gene expression profiling of peripheral blood 

mononuclear cells on an Agilent microarray to compare 20 patients with PE with 20 age and 

gender matched individuals with ischemic heart disease but without pulmonary embolism. 

They observed increased mRNA expression of L-selectin, ITGAL, and ICAM-1 in 

participants with pulmonary embolism [43].

There are several limitations to this study that merit consideration. First, the individual 

cohorts were clinically heterogeneous, differing by the proportion of patients with PE, the 

time since their most recent event, and the proportion on anticoagulant therapy at the time of 

enrollment (Table 1). Patients were identified as belonging in the individual cohorts by the 

site investigators using pre-defined criteria, however, and were representative of patients 

encountered in clinical practice at the study sites. A second limitation is that we did not 

enroll sufficient patients for an independent validation set. For studies with moderate sample 

sizes, it has been shown that resampling the data provides a more accurate estimate of 

prediction error than splitting the samples into training and validation sets [28–30]. We 

chose this approach, estimating the prediction error using leave-one-out cross-validation, an 

approach that iteratively evaluates each sample and its contribution to the overall model. 

Our final sample size was smaller than our target, primarily due to the fact that almost a 

quarter of the participants (43 of 175) were excluded from the final analysis on the basis of 

sample quality. Sample collection and processing at multiple sites most likely contributed to 

this outcome.

In summary, we have used gene expression profiling to characterize patients with different 

clinical phenotypes of VTE. The profiles obtained distinguish patients with recurrent, 

unprovoked VTE from healthy controls and patients with provoked VTE only, and provide 

insights into approaches that might be useful in the identification of individuals with a single 

thrombotic event who are at highest risk for a recurrent VTE after completing a standard 

course of therapy. Prospective studies are needed to determine the prognostic value of gene 

expression analyses in identifying these high-risk patients and guiding duration of 

anticoagulant therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ANXA2 annexin A2

ANXA5 annexin A5

AUC area under the curve

C1QB complement component 1, q subcomponent, B chain

C5 complement component 5

CD46 complement regulatory protein

CDC Centers for Disease Control and Prevention

CFH complement factor H

CR1 complement component receptor 1

CR2 complement component receptor 2

DVT Deep vein thrombosis

EDN1 endothelin 1

F2RL1 coagulation factor II receptor-like 1

F11 coagulation factor XI

HIF1A hypoxia inducible factor 1, alpha subunit

ICAM-1 intercellular adhesion molecule 1

IGF1R insulin-like growth factor 1 receptor

IL4 interleukin 4

ITGAL integrin alpha L chain

KEGG Kyoto Encyclopedia of Genes and Genomes

KLKB1 kallikrein B

PE pulmonary embolism

PPARD peroxisome proliferator-activated receptor delta

SELP selectin P

SERPING1 Serpin peptidase inhibitor Glade G (C1 inhibitor)
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SNPs single nucleotide polymorphisms

TF transferrin

VTE venous thromboembolism
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Fig. 1. 
Biomarker Levels in the Plasma or Serum of Study Participants. (A) factor XI, (B) annexin 

A5, (C) sP-selectin, (D) endothelin-1 and (E) CD46 levels were measured in plasma or 

serum samples collected at the same time as the PAXgene tubes as described in the Material 

and Methods section. The abbreviations used include: HR, high-risk group; MR, moderate-

risk group; LR, low-risk group; and Con, Healthy controls. The mean and 95% confidence 

intervals are indicated on each graph.
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Table 1

Demographics of the Study Participants.a

Variable High-risk (n = 40) Moderate-risk (n = 33) Low-risk (n = 34) Healthy Controls (n = 25)

Age (years), mean (range) 56 (27–81) 54(21–84) 48 (24–89) 46 (29–70)

Female, n (%) 13 (32) 18 (54) 20 (59) 16 (64)

BMI, mean (range) 33.0 (19.1–47.0) 31.3 (17.1–48.6) 31.9 (19.2–54.0) 28.8 (19.9–43.8)

Race, n (%)

 White 33 (82) 27 (82) 30 (88) 21 (84)

 Black 7 (17) 6 (18) 3 (9) 3 (12)

 Other - - 1 (3) 1 (4)

VTE events per subject, n (%)

  One 0 21 (64) 29 (85)

  Two 25 (63) 10 (30) 5 (15) N/A

  Three 9 (22) 2 (6) 0

  ≥Four 6 (15) 0 0

Pulmonary embolism, n (%) 20 (50) 27 (82) 11 (32) N/A

Age at first event (years), mean (range) 44 (9–74) 50 (17–84) 44 (19–88) N/A

Time since last VTE (years), mean 
(range)

4.76 (0.24–20.98) 2.17 (0.23–7.30) 2.61 (0.22–13.62) N/A

Anticoagulant therapy, n (%)

  Warfarin 35 (88) 29 (88) 21 (62) -

  Other 5 (12) 2 (6) 1 (3) -

  None - 2 (6) 12 (35) 25 (100)

a
Pair-wise comparisons between the study groups were significantly different for the following comparisons. Age: Individuals in the high-risk 

group were significantly older than those in the healthy control (p = 0.01) and the low-risk group (p = 0.03), and individuals in the moderate-risk 
group were significantly older than those in the healthy control group (p = 0.04). BMI: Individuals in the high-risk group were significantly larger 
than those in the healthy control group (p = 0.017). Sex: There were fewer females in the high-risk group than the low-risk group (p = 0.03) or the 
healthy controls (p = 0.02). Type of VTE: More individuals in the moderate-risk group had PE compared to the high-risk (p = 0.006) and low-risk 
groups (p < 0.0001). Time since the last VTE was significantly longer for individuals in the high-risk group compared to the moderate-risk (p = 
0.05) and low-risk groups (p = 0.03). Anticoagulant therapy: More individuals were on anticoagulant therapy in the high-risk and moderate-risk 
groups compared to the low-risk group (p = <0.0001 and p = 0.005, respectively).
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Table 2

Leave-one-out Cross Validation of Class Prediction using Factors with Penalized Regression.

Comparison Total Participants in Each Set Number Classified Correctly Class error rate AUC of ROC curve

High-risk vs. 40 37 0.07 0.50

Moderate-risk 33 1 0.96

High-risk vs. 40 31 0.22 0.81

Low-risk 34 24 0.29

High-risk vs. 40 36 0.10 0.84

Healthy Controls 25 19 0.24

Moderate-risk vs. 33 18 0.45 0.58

Low-risk 34 18 0.47

Moderate-risk vs. 33 29 0.11 0.69

Healthy controls 25 16 0.36

Low-risk vs. 34 33 0.03 0.80

Healthy Controls 25 12 0.25
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Table 3

Differentially Expressed Coagulation Related Genes.a

Gene Symbol HR vs. LRb,c Expressed higher in HR vs. Conb,c Expressed higher in

Differentially expressed in both comparisons

F2RL1 Yes Low-risk Yes Controls

RAB27A Yes Low-risk Yes Controls

CD46d Yes Low-risk Yes Controls

Differentially expressed in HR vs. LR only

STXBP3 Yes Low-risk No ------------------

Differentially expressed in HR vs. Con only

KLKB1d No ------------------ Yes High-risk

GP1BA No ------------------ Yes High-risk

SERPINA1d No ------------------ Yes High-risk

ANXA5 No ------------------ Yes Controls

ANXA2 No ------------------ Yes Controls

EDN1 No ------------------ Yes High-risk

F11d No ------------------ Yes Controls

SELP No ------------------ Yes High-risk

SERPING1d No ------------------ Yes High-risk

EFEMP2 No ------------------ Yes High-risk

DTNBP1 No ------------------ Yes High-risk

PLAURd No ------------------ Yes High-risk

KIAA1715 No ------------------ Yes High-risk

HPS5 No ------------------ Yes High-risk

C1QBd No ------------------ Yes High-risk

CR1d No ------------------ Yes Controls

CR2d No ------------------ Yes Controls

C5d No ------------------ Yes High-risk

CFHd No ------------------ Yes High-risk

BDKRB1d No ------------------ Yes High-risk

VWA3B No ------------------ Yes High-risk

a
The following gene ontology terms were used to identify genes related to coagulation in the two comparisons: GO:0050817 ~ coagulation, GO:

0007596 ~ blood coagulation, and GO:0030193 ~ regulation of blood coagulation and the interpro term, IPR002035:von Willebrand factor, type A.

b
“Yes” indicates that the gene is differentially expressed; “No” indicates that it is not differentially expressed.

c
Abbreviations used in this table: HR, high-risk and LR, low-risk; and Con; healthy controls.

d
Indicates that the gene is also in the KEGG pathway hsa04610: coagulation and complement cascades.
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